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The set of all functions j(2) which are holomorphic in the open unit
disk B and for which

fa f I j(z)1 2 dx dy < 00,

will be denoted by D(B).
Set, for any fE D(B), and for n = 0, I, ... ,

(1)

Let j(x) be a real continuous function on [-I, I] and w(x) a real non­
negative Riemann integrable function on [-I, 1]; then set

[I I ]1/2
E~2'(f, w) = E~2)(f) = ~~~ -1 Ij(x) - p(X)j2 w(x) dx ,

n = 0, 1,2,... , (2)

where 7Tn denotes the class of all real polynomials of degree at most n.
Further, let

En(f) = min II j(x) - p(x)ll,
pE1rn

n = 0, 1,... , (3)

where IIII is the uniform norm on [-1, 1].
Recently, it has been studied [4] how En(f), for fwhich is a restriction of

an entire function, is related to the order and type of the function. In [5J,
we have investigated how the Taylor coefficients of an entire function are
related to the error in best approximations (as in (3». In [6], we have discussed
how En(f) is related to Mn(f) - max_1';;"'';;1 Ipn>(x)! for entire functions.
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We are here interested in knowing how iJn(f) is related to the order and
type off, assumed to be entire. We also investigate how iJn(f) is related to the
(n + l)st coefficient of the Taylor expansion of f Further, we show how
E~2)(f) is related to the order and type of the entire function. Finally, we
obtain an asymptotic relation between En(f) and E~2)(f) for a sequence of
values of n.

THEOREM 1. A necessary and sufficient condition for feZ) E V(B) to be
an entire function is that

lim [iJ n(f)]l/n = O.
n->oo

Proof Letf(Z) = L;~o akZk E V(B); it is known [3, p. 333] that

Now let us suppose thatf(Z) is entire; then

lim I ak 1
1/ k = O.

k->oo

One has from (7) and (8), for any € > 0 and for all n ;?: no(€),

[iJ n(f)]2 ~ f _7T_ e2k
k~n+l k + 1

< (n + 2) . (1 - €2) ,

e being arbitrary, (6) follows from (10).
If (6) is true, then since

[iJ n(f)]2 ;?: (n ~ 2) I an+! 1
2,

(6)

(7)

(8)

(9)

(10)

(11)

we have limk+oo Iak 1
1/ k = 0, and hence f is entire.

Remark. The first part of the theorem has been stated without proof
in [3, p. 334].

THEOREM 2. If feZ) E V(B), then feZ) is an entire function of order
p(O < P < (0) if, and only if,

. n log n
~~ sup log[1/Ll

n
(f)] = p. (12)
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Proof Assume (12). Then (6) follows, and, hence,[is an entire function.
Suppose thatf(Z) = L;:o adz; is of order 0:. Then [2, p. 9]

. n log n
0: = ~~ sup log[1/1 an [] .

Given any € > 0, we have from (13) for all k ~ ko(€),

One obtains from (7) and (14) with a little manipulation:

[L1 n(f)]2 = k~~+1 (k ~ 1) I ak 1
2 ~ (n ~ 2) k~~+1 k2k/~ct+<)

~ 7T 1 [~ (n + 2)-2;/(ct+<l]
"" (n + 2) (n + I)2(n+1)/(ct+<l f;:o

~ 7T [1 _ ( + 2)-2/(ct+<)]-1
"" (n + I)2(n+1)(ct+<l n .

E being arbitrary, we have, from (12) and (15),

. n log n
p = ~l~ sup log[I/Lln(f)] ~ 0:.

(13)

(14)

(15)

From (7) and (13)

. n\og n
p = ~l~ sup log[l/Lln(f)]

. n log n
~ lIm sup I [II I = 0:,

11->00 og an

hence p = 0:.

The converse part of the theorem can again be derived from (7) and (13).

THEOREM 3. If fE V(R), then feZ) is an entire function of order
p(O < P < (0) and type T(O < T < (0) if and only if

(16)

Proof (16) implies (12) which, in turn, implies that feZ) is an entire
function of order p. It is known [2, p. 8] that the type off is

f1 = lim sup.!!..-[ an I"/n(o < f1 < (0).
11->00 pe

(17)
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From (17) we have, for all k ;;:: ko(E),

(pe({1 + E))k/o
Iak I ~ k

From (7) and (18) we can deduce, as in the proof of Theorem 2, that

T = lim sup!!.- [Lln(f)]P/n ~ {1.
11->00 pe

Also, from (11) and (17)

113

(18)

T = lim sup!!.- [Lln(f)jP/n ;;:: lim sup!!.- I an lo/n = {1._00 ~ _00 ~

Hence T = {1.
If1(Z) is entire of order p(O < P < 00) and type T(O < T < 00), then we

can show easily, using (7) and (18), that (16) holds.

THEOREM 4. Let I(Z) = L;=o akZk be an entire transcendental function.
Then there exists a sequence of integers 0 ~ n1 < n2 < '" < n1J < ... for
which all an +1 are ~O and

p

lim (np + 2)1/2 Llnp(f) = 1T1/2•
0->00 Ianp+1 I

Proof Since/(Z) is entire,

lim I ak J1/k = O.
k->oo

(19)

(20)

Let (E1J);=1 be an arbitrary sequence of positive numbers <1, with E1J -+- O.
There are [3a, pp. 128-129], for p = 1,2'00" infinitely many integers n1J ;> 0
for which

(j = 1,2'00')' (21)

For each p ;> 1 we choose such an n1J so that 0 ~ n1 < n2 < .... Then, for
every p ;> 1, by (7),

(
1T )1/2 ( 1T )1/2 [ 00 ] 1/2

n1J + 2 I anp+1 I < Llnp(f) < n1J + 2 ~1 I a"p+1 1

2

I a 11T1/2 (00 )1/2 I a 11T
1

/
2

n,,+1 " 21 np+1
~ (n1J + 2)1/2 f';;o E1J = (n1J + 2)1/2 (1 - E,l)1/2

(22)
from which (19) follows.
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THEOREM 5. Letl(x) be a real continuousfunction on [-1, 1]. A necessary
and sufficient condition for I(x) to be the restriction to [-1, 1] of an entire
function is that

(23)

Proof Let Ao/2 + L:~1 AkTk(x) be the Fourier-Chebyshev series of
I(x). Then

(24)

Further, it is known [1, p. 111] that

IAn+1 I + I An+2 I + I An+3 I + ... ? En ? [!(A~+1 + A~+2 + ... +)]112;
(25)

hence,

(26)

IfI (X) is the restriction to [-1, 1] of an entire function, then [1, p. 111]

lim E~/n = 0,
n-'>oo

which implies (23).
On the other hand, if 1imn->oo[E~2)Jl/n= 0, then from (24) we have

lim I A 1
1/k = 0

k-.e,OC) k "

(27)

(29)

which implies, by (25), that 1imn->oo[EnU)]lln = 0; this, in turn, implies that
lex) is the restriction to [-1, 1] of an entire function [1, p. 113].

THEOREM 6. If I (x) is a real continuous function on [-1, 1], then it is
the restriction to [-1, 1] of an entire function of order p(O < p < 00) if and
only if

. n log n
~~ sup log[1/E~2)] = p. (30)

Proof (30) implies (23), namely, that I(x) is the restriction to [-1, 1]
of an entire function, say of order Ct. Now it follows from (26) and
Theorem 1 of [7] that

. n log n . n log n
Ct = t~ sup [log IIEnC!)] ? ~~ sup log[1IE(2'] = p. (31)

n
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From (30) and (24), for a given € > 0 and for all sufficiently large n,

!!- A2 :S:: [E(2)]2 :S:: n-2n !(p+E)
2 n+l "'" n "'" •

Now it follows, with a little manipulation, from (25) and (32), that

. n log n
ex = ~l~ sup log[ljEn(f)] ~ p,

115

(32)

(33)

hence, ex = p. Conversely, suppose f (x) is the restriction to [-1, 1] of an
entire function of order p. Then we have from (26) and Theorem 1 of [7],

. n log n . n log n
p = ~~ sup 10g[1jEn(f)] ): l~~ sup log[1jE~2)J . (34)

As in the first part of the proof we obtain also the reverse inequality for p.
Hence (30).

THEOREM 7. Letf(x) be a real continuousfunction on [-1, 1]. A necessary
and sufficient condition for f(x) to be the restriction to [-1, 1] of an entire
function of order p(O < p < (0) and type T(O < T < (0) is that

(35)

Proof If f (x) is the restriction to [-1, 1] of an entire function of order
p(O < p < (0) and type T(O < T < (0), then, as is known [4, Theorem 3]

lim sup!!- [En(f))"!n = 2
T

•
n->OO pe p

One has from (26) and (36),

(36)

(37)

One can prove the reverse inequality for TI2p as in the proof of Theorem 6.
We omit the proof of the second half of the theorem.

THEOREM 8. If Ao/2 + A1T1(x) + A 2T2(x) + ... + AnTn(x) + ... is the
Fourier-Chebyshev series expansion ofa realfunctionf(x), defined on [-1, 1],
which is the restriction ofan entire transcendental function, then there exists a
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sequence of integers 0 :s;: n1 < n2 < ... < np < ... for which all A np+1 are
#0 and

(38)

Proof The proof follows the same lines as that of Theorem 4, with the
difference that instead of using (7) and (20) we use (24) and (29).

THEOREM 9. If f(x) is the restriction to [-1, 1] of an entire function, then
there exists a sequence of integers 0 :s;: n1 < n2 < '" < np < .. ,for which

(39)

Proof We know from Theorem 8 that for some such sequence (np);=l'

(40)

It is also known [1, (167), p. 115] that for some such sequence (np');=l'

(41)

If we can show that (40) and (41) hold for the same sequence, then (39) will
follow. In proving (40), we used the fact that

lim I A 1
1

/
k = 0k-7CO k ,

(29)

from which follows that, given € > 0, for infinitely many integers n ~ 0
we have

(j = 1,2,...). (42)

Bernstein used [1, (168), p. 115] only (29) and (42) to prove (41), hence one
can choose np = np '.
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